Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli

نویسندگان

  • Melis Yilmaz
  • Markus Meister
چکیده

Much of brain science is concerned with understanding the neural circuits that underlie specific behaviors. While the mouse has become a favorite experimental subject, the behaviors of this species are still poorly explored. For example, the mouse retina, like that of other mammals, contains ∼20 different circuits that compute distinct features of the visual scene [1, 2]. By comparison, only a handful of innate visual behaviors are known in this species--the pupil reflex [3], phototaxis [4], the optomotor response [5], and the cliff response [6]--two of which are simple reflexes that require little visual processing. We explored the behavior of mice under a visual display that simulates an approaching object, which causes defensive reactions in some other species [7, 8]. We show that mice respond to this stimulus either by initiating escape within a second or by freezing for an extended period. The probability of these defensive behaviors is strongly dependent on the parameters of the visual stimulus. Directed experiments identify candidate retinal circuits underlying the behavior and lead the way into detailed study of these neural pathways. This response is a new addition to the repertoire of innate defensive behaviors in the mouse that allows the detection and avoidance of aerial predators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of visually evoked innate fear by a non-canonical thalamic pathway

The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in m...

متن کامل

A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour

Animals promote their survival by avoiding rapidly approaching objects that indicate threats. In mice, looming-evoked defensive responses are triggered by the superior colliculus (SC) which receives direct retinal inputs. However, the specific neural circuits that begin in the retina and mediate this important behaviour remain unclear. Here we identify a subset of retinal ganglion cells (RGCs) ...

متن کامل

Stress Accelerates Defensive Responses to Looming in Mice and Involves a Locus Coeruleus-Superior Colliculus Projection

Defensive responses to threatening stimuli are crucial to the survival of species. While expression of these responses is considered to be instinctive and unconditional, their magnitude may be affected by environmental and internal factors. The neural circuits underlying this modulation are still largely unknown. In mice, looming-evoked defensive responses are mediated by the superior colliculu...

متن کامل

Threat modulates perception of looming visual stimuli

Among the most critical of visual functions is the detection of potentially hazardous or threatening aspects of the environment. For example, objects on a collision course with an observer must be quickly identified to allow sufficient time to prepare appropriate defensive or avoidant responses. Directly approaching objects produce a specific accelerating pattern of optical expansion, known as ...

متن کامل

Rapid Spatial Learning Controls Instinctive Defensive Behavior in Mice

Instinctive defensive behaviors are essential for animal survival. Across the animal kingdom, there are sensory stimuli that innately represent threat and trigger stereotyped behaviors such as escape or freezing [1-4]. While innate behaviors are considered to be hard-wired stimulus-responses [5], they act within dynamic environments, and factors such as the properties of the threat [6-9] and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013